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Abstract

The connection between the predictability of the East Asian
summer monsoon (EASM) and El Nifio-Southern Oscillation
(ENSO) has recently attracted widespread attention. Of particular
importance is the effect of El Nifio and La Nifia on EASM pre-
dictability. In this paper, the signal-to-noise ratio (SNR) method
is used to analyze reanalysis data, and the results show that the
EASM potential predictability intensity is much stronger under
El Nifio forcing than that under La Nifa forcing. Meanwhile, the
asymmetric response of EASM predictability remains within the
Community Atmosphere Model (CAM) simulations. The EASM
predictability is quantitatively determined using the nonlinear
local Lyapunov exponent (NLLE) method. The EASM predict-
ability limit under El Niflo forcing is longer than that for La Nifia
forcing. Two monsoon indices are used to measure the EASM,
the predictability limits of which perform differently because of
their particular definitions. However, the asymmetric response of
EASM predictability to El Nifio and La Nifia can be verified using
observational data and model experiments.

(Citation: Li, B., R. Ding, J. Li, Y. Xu, and J. Li, 2018: Asym-
metric response of predictability of East Asian summer monsoon
to ENSO. SOLA, 14, 52-56, doi:10.2151/s0la.2018-009.)

1. Introduction

The East Asian summer monsoon (EASM) dominates the
transport of water vapor over East Asia, and has a significant
impact on summer precipitation across the Yangtze Basin (Ding
et al. 2010a). Thus, accurate prediction of the EASM is vital if
we are to generate more reliable forecasts of intense precipitation
and the associated flood events across East Asia (Wu et al. 2006,
2009). Numerous studies have shown that the onset and intensity
of the EASM are significantly affected by previous El Nifio—
Southern Oscillation (ENSO) events (e.g., Webster and Yang
1992; Wang et al. 2000). Furthermore, ENSO, the strongest trop-
ical Pacific sea surface temperature (SST) signal over interannual
timescales, is characterized by warm SST anomalies over the
eastern Pacific Ocean. These SST anomalies have a significant
effect on a wide range of climatic and weather processes around
the world, and in particular on the climate of the East Asian region
(e.g., McPhaden et al. 2006; Deser et al. 2010).

Previous studies have demonstrated that ENSO, as a signif-
icant external forcing, has a notable effect on climate predict-
ability. Palmer et al. (1992) concluded that tropical regions show
high predictability during strong ENSO years. Shi et al. (2008)
analyzed the results of the SMIP2 model using the signal-to-
noise ratio (SNR) method, and pointed out that the Asian summer
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monsoon shows high potential predictability in strong El Nifio and
strong La Nifia years. Given the importance of the EASM and its
interactions with ENSO, it is of great interest to investigate the
response of EASM predictability to ENSO. To date, few studies
have considered the response of EASM predictability to El Nifio
and La Nifia, respectively. Therefore, the question remains: what
is the difference between the response of EASM predictability
to El Nifio and La Nifia? The goal of this study is to answer that
question.

Here, we use the nonlinear local Lyapunov exponent (NLLE)
method, which has been widely used in the study of atmospheric
and oceanic predictability (Ding and Li, 2009; Li and Ding,
2011, 2013), to investigate EASM predictability in a quantitative
manner. Using this method, the EASM predictability limits as-
sociated with El Niflo and La Nifia forcing will be quantitatively
determined. However, to apply the NLLE method requires long
datasets, and there are only about 10 years of composite observa-
tional data available. To address this shortfall in data, we used the
SNR method to analyze the observational data, and then ran model
experiments to generate the amount of data required for the NLLE
method. For this study, we measured the EASM using two types
of index, and predictability was explored based on qualitative and
quantitative methods. Our aim was to deepen our understanding of
the effect of different ENSO events on EASM predictability.

The reminder of this article is arranged as follows. The data
and methods used are described in Section 2. Sections 3 and 4
consider the response of EASM predictability to El Nifio and La
Niiia in the observations and models. Finally, a discussion and our
conclusions are provided in Section 5.

2. Data and methods

2.1 Reanalysis data

The SST dataset used in this study was based primarily on the
Extended Reconstructed SST version 3b (ERSSTv3b) obtained
from the National Oceanic and Atmospheric Administration
(NOAA) with a 2° x 2° horizontal grid resolution and covering
the period 1949 to 2015 (Smith et al. 2008). The monthly SST
data were used to examine the typical Oceanic Niflo Index (ONI).
The ONI index is a three-month running mean of SST anomalies
in the Nifio 3.4 region (5°N-5°S, 120°W-170°W). El Nifio and La
Nifla periods were based on a threshold of +1.0°C for the ONI in
the boreal winter (December—February: DJF).

To analyze the EASM, the daily mean atmospheric fields were
taken from the National Centers for Environmental Prediction
(NCEP1) reanalysis data, with a horizontal resolution of 2.5° x
2.5°, over the period 1948-2015 (Kalnay et al. 1996; Kistler et al.
2001). In this study, the boreal summer covers the months June—
August (JJA).

Given that the EASM has complex spatial and temporal struc-
tures (Ding 1992; Wang et al. 2008), two categories of monsoon
index were used to verify our results. Li and Zeng (2002, 2003;



Li et al., Response of EASM Predictability to ENSO

hereafter I-LZ) defined their EASM index using dynamic normal-
ized seasonality (DNS), which is based on a seasonal alternation
in wind direction over the monsoon region (10°N—40°N, 110°E—
140°E). Wang and Fan (1999; hereafter I-WF) used the area-
averaged 850-hPa zonal wind (U850) over (5°N-15°N, 90°E—
130°E) minus the area-averaged U850 over (22.5°N-32.5°N,
110°E—~140°E) as their index. These two indices show relatively
high correlations with the circulation and precipitation systems of
the EASM (Wang et al. 2008).

2.2 Methods
a. Signal-to-noise ratio (SNR) method

The SNR method has been widely used to investigate atmo-
spheric predictability (Trenberth 1984, 1985; Goswami 2004).
The SNR estimates atmospheric predictability by quantifying the
relative contributions of the predictable climate signal and the
unpredictable climate noise:

SNR — Var(signal) + Var(noise)

(M

Var(noise)

where Var (signal) represents the variance of interannual variabil-
ity, and Var (noise) is the variance of the intra-annual (seasonal)
variability.

b. Nonlinear local Lyapunov exponent (NLLE) method

The NLLE measures the average growth rate of initial errors
based on the nonlinear error growth equations (Ding and Li 2007;
Ding et al. 2008). The atmospheric and oceanic predictability
limit can be quantitatively determined over various timescales
using the NLLE method (Ding et al. 2010b, 2011, 2016). EASM
predictability can be determined using local dynamical analogs
of the evolution based on the monsoon index time series. The ap-
proximation of the mean relative growth of the initial error (RGIE)
can be obtained as follows:

®(r,)=exp[é(r)r,], (=1,2,3,...,n) 2)
where ®(z;) indicates that the average error growth @ changes
with the average of the error growth rates & (r;) and time 7,. By
investigating the evolution of @ (#,) with increasing ;, we can es-
timate the mean predictability limit of the variable as a function of
the evolution time 7, (i = 1,2,3, ...,n), where n is the total number
of evolutionary steps.

2.3 Model experiment

We used the National Center for Atmospheric Research
(NCAR) Community Atmosphere Model version 5 (CAMS)
to gain a more robust insight into the atmospheric response to
ENSO-related SST forcing. CAMS is the atmospheric component
of the Community Earth System Model (CESM 1.0.4) and uses
the finite-volume dynamical core, which has 42-wave triangular
spectral truncation (T42) and 30 vertical levels from the surface
up to 2.25 hPa.

We carried out two experiments: El Nifio and La Nifia. In the
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El Nifio run, the regression of the ONI index and global SST was
calculated and added over the observed monthly climatology of
the SST (Fig. 1a). In the La Nifia run, the forcing SST was the
observed monthly climatology of SST minus the regression (Fig.
1b). These two model experiments were forced by the Hadley
Center Global Sea Surface Temperature (HadISST) dataset from
1850 to 2012 (Rayner et al. 2006).

In both the El Nifio and La Nifa runs, the SST was kept
constant in time and the model was integrated for 20 yr. Thus, the
daily mean atmospheric field data could be used to investigate the
response of the EASM to ENSO events.

3. Observational results

To explore the response of EASM predictability to El Nifio
and La Nifia, we used the ONI index to identify the El Nifio
and La Nifna events. The ONI time series was calculated from
December to February during the mature phase of ENSO, be-
cause the main impact of ENSO on the EASM occurs during the
boreal winter. Figure 2 shows the ONI time series for the period
1949-2015, which is characterized by its significant interannual
variability, with the range of the SST anomalies being about
+2.0°C. The most extreme temperature anomalies occurred in
1997 (+2.31°C) and 1973 (—1.85°C).

The El Nifio and La Nifla events selected for analysis are
listed in Table 1, and these were identified using a threshold of
+1.0°C. Most of the El Niflo and La Nifia events involved in this
study (Table 1) are commonly recognized by the community (e.g.,
McPhaden 1999; Jin et al. 2003; Ding et al. 2016). Then, we used
composite analysis to check the SST anomalies in DJF over the
tropical Pacific (Fig. 3). The El Nifio-related and La Nifia-related
SST patterns are shown in Figs. 3a and 3b, respectively. Figure
3a shows that the El Nifo-related positive SST anomalies are
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Fig. 2. Time series of ONI index for DJF over the period 1949-2014, after
removing the annual cycle and linear trend, standardizing. The dashed
lines indicate the thresholds for definition of warm and cold events. The
red and blue bars indicate the positive and negative SST anomalies,
respectively.
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Fig. 1. (a) Regression of ONI index and global SST over tropical Pacific Ocean for DJF during the period 1949-2015. (b) As (a) but in reverse.
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Table 1. Classification of El Nifio/La Nifia events during the period 1949—
2015.

Event Year
El Nifio 1957, 1965, 1968, 1972, 1982, 1986, 1991, 1994, 1997,
2002, and 2009
La Nifa 1949, 1955, 1970, 1973, 1975, 1988, 1998, 1999, 2007,

and 2010

concentrated mainly in the central and eastern tropical Pacific,
whereas the El Nifio-related negative SST anomalies are found
in the western Pacific and subtropical ocean. The La Nifia-related
SST pattern is the reverse of the El Nifio-related pattern (Fig. 3b).

We used the SNR method to estimate the potential EASM pre-
dictability levels associated with El Nifio and La Nifia events (Fig.
4). The predictability of the EASM affected by El Nifio is up to
12.35, whereas it is 4.19 when affected by La Nifa. The results in-
dicate the asymmetric response of EASM predictability to ENSO,
suggesting that El Nifio (La Nifa) will lead to a stronger (weaker)
predictable intensity for the EASM in the following year.

We also ran model experiments to examine this asymmetric
response of EASM predictability to El Nifio and La Nifia. In
addition, the NLLE method was used to determine the predict-
ability limit. Compared with the SNR method, which calculates
only the potential predictability intensity, the NLLE method can
estimate the exact predictability limit. However, due to the lack
of observational data, we were unable to use the NLLE method
with the observational results. Under our model setup, the position
and intensity of the two sets of SST anomalies were the same in
both runs, only the sign differed, so that the impact of SST alone
was considered and all other factors were ignored. This approach
highlights the impacts of El Nifio and La Nifia.

4. Model results

The mean errors of the EASM initially increase quickly, then
slow down, and finally reach saturation (Fig. 5). Figure 5a and
5b shows that the error growth behaves differently to the rate of
growth. The error growth associated with the I-LZ index under
El Nifio forcing becomes much slower than that for the La Nifa
forcing. Therefore, the error growth of I-LZ forced by El Nifio (La
Nina) needs more (less) time to reach saturation.

Ding and Li (2007) proposed that for chaotic systems the
error growth will eventually reach saturation. As the error growth
approaches saturation level, almost all of the information on the
initial states is lost and the prediction becomes meaningless. Using
the saturation level, this predictability limit can be determined.
To reduce the effects of sampling fluctuations, we defined the
predictability limit as the point when the error reached 95% of its
saturation level. As the moment to saturation, the predictability
will be determined (shown in Fig. 6).

(a) El Nifio
30N 5

SOLA, 2018, Vol. 14, 5256, doi:10.2151/s0la.2018-009

20

= 15 A

& 12.35

<

wi

5 10

2y

&
5 - 419
0 -

El Nifio La Nifia

Events

Fig. 4. The potential predictability of the EASM. The red and blue bars
indicate the El Nifio and La Nifia effect, respectively.

The predictability of I-LZ forced by El Nifio is up to 32 days,
whereas that forced by La Nifia is only 22 days. This 10-day
difference suggests that El Nifio will lead to the EASM having a
longer predictability limit than La Nifia. We also investigated the
error growth associated with the I-WF index forced by El Niflo
and La Nifa (Figs. Sc and 5d, respectively). According to the cri-
terion of the 95% saturation level, the predictability limit of I-WF
forced by El Nifio (La Nifia) is approximately 21 days (15 days).
As with I-LZ, the error growth of I-WF forced by El Nifio (La
Nifla) appears to be longer (shorter) than the predictability limit.
Our analysis of the response of the two EASM indices also reveals
that the predictability limit calculated using the NLLE method is
based mainly on the respective initial states. Figures 5a and 5c
shows that, under El Nifio forcing, the error growth of I-LZ fol-
lows a slower deceleration process than that of I-WF. Therefore,
I-LZ (around 32 days) tends to produce more skillful predictions
than I-WF (around 21 days; Fig. 6). As mentioned above, it is
evident that El Nifio will lead to relatively improved predictability
for both EASM indices.

Our simulation results are similar to the observations, which
gives us the confidence to conclude that ENSO does influence
EASM predictability in the following year. Note that El Nifio will
lead to relatively high predictability of the EASM. In contrast to
previous research (e.g., Palmer et al. 1992; Shi et al. 2008), this
work has investigated the response of EASM predictability to
El Nifio and La Nifa. Moreover, our experiments eliminated the
impact of other factors, such as the intensity and position of the
SST anomalies.

5. Discussion and conclusions

Improving our understanding of the impact of external forcing
on climate predictability is vital to the ongoing development of
numerical models and improving our forecast skill with respect to
the EASM. ENSO is well known to have a significant influence
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Fig. 3. Composite anomalies of SST over tropical Pacific Ocean in DJF for selected (a) El Niflo and (b) La Nifia events during the period 1949-2015.
Details of the ENSO change events selected for composite analysis are given in Table 1.
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Fig. 5. Mean error growth of the I-LZ index under (a) El Nifio and (b) La Nifia forcing. (c) and (d) as (a) and (b), but for the I-WF index. The dashed line
represents the 95% level of the saturation value, as obtained by taking the average of the mean error growth after 40 days. The @ denotes the mean error of
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Fig. 6. The predictability limits of the I-LZ and I-WF indices. The red and
blue bars indicate the El Nifio and La Nifia effects, respectively.

on the EASM. Thus, in this study, we investigated the effect of
ENSO on EASM predictability, and in particular the different
effects of El Nifio and La Nifia. By using reanalysis data and
statistical methods, we found that the response of EASM pre-
dictability is asymmetrical, and that El Nifio leads to stronger
predictable intensity than La Nifia. In addition, two EASM indices
and the quantitative method (NLLE) being used to research the
model simulation results, the asymmetric response still exists even
though La Nifa intensity has been increased.

Although we found an asymmetric response in EASM pre-
dictability, how the two different SST anomaly patterns, El Nifo
and La Nifia, affect EASM predictability remains an unanswered
question. In a previous study, Li et al. (2017) found that forcing by
the positive anomalies leads to a higher predictability limit than
forcing by the negative anomalies. They used a simple chaotic
model to demonstrate how the different initial conditions drive
the nonlinear response, which in turn leads to the different pre-
dictability limits, and this provides one possible interpretation of
our results. Both the EASM and ENSO are complex and nonlinear
climate systems, but in particular, ENSO as an external forcing
factor that leads to a nonlinear response requires more research,
and this will be the subject of a future paper.
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