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Abstract
The connection between the predictability of the East Asian 

summer monsoon (EASM) and El Niño-Southern Oscillation 
(ENSO) has recently attracted widespread attention. Of particular 
importance is the effect of El Niño and La Niña on EASM pre-
dictability. In this paper, the signal-to-noise ratio (SNR) method 
is used to analyze reanalysis data, and the results show that the 
EASM potential predictability intensity is much stronger under 
El Niño forcing than that under La Niña forcing. Meanwhile, the 
asymmetric response of EASM predictability remains within the 
Community Atmosphere Model (CAM) simulations. The EASM 
predictability is quantitatively determined using the nonlinear 
local Lyapunov exponent (NLLE) method. The EASM predict-
ability limit under El Niño forcing is longer than that for La Niña 
forcing. Two monsoon indices are used to measure the EASM, 
the predictability limits of which perform differently because of 
their particular definitions. However, the asymmetric response of 
EASM predictability to El Niño and La Niña can be verified using 
observational data and model experiments.

(Citation: Li, B., R. Ding, J. Li, Y. Xu, and J. Li, 2018: Asym-
metric response of predictability of East Asian summer monsoon 
to ENSO. SOLA, 14, 52−56, doi:10.2151/sola.2018-009.)

1. Introduction

The East Asian summer monsoon (EASM) dominates the 
transport of water vapor over East Asia, and has a significant 
impact on summer precipitation across the Yangtze Basin (Ding 
et al. 2010a). Thus, accurate prediction of the EASM is vital if 
we are to generate more reliable forecasts of intense precipitation 
and the associated flood events across East Asia (Wu et al. 2006, 
2009). Numerous studies have shown that the onset and intensity 
of the EASM are significantly affected by previous El Niño–
Southern Oscillation (ENSO) events (e.g., Webster and Yang 
1992; Wang et al. 2000). Furthermore, ENSO, the strongest trop-
ical Pacific sea surface temperature (SST) signal over interannual 
timescales, is characterized by warm SST anomalies over the 
eastern Pacific Ocean. These SST anomalies have a significant 
effect on a wide range of climatic and weather processes around 
the world, and in particular on the climate of the East Asian region 
(e.g., McPhaden et al. 2006; Deser et al. 2010). 

Previous studies have demonstrated that ENSO, as a signif-
icant external forcing, has a notable effect on climate predict-
ability. Palmer et al. (1992) concluded that tropical regions show 
high predictability during strong ENSO years. Shi et al. (2008) 
analyzed the results of the SMIP2 model using the signal-to-
noise ratio (SNR) method, and pointed out that the Asian summer 

monsoon shows high potential predictability in strong El Niño and 
strong La Niña years. Given the importance of the EASM and its 
interactions with ENSO, it is of great interest to investigate the 
response of EASM predictability to ENSO. To date, few studies 
have considered the response of EASM predictability to El Niño 
and La Niña, respectively. Therefore, the question remains: what 
is the difference between the response of EASM predictability 
to El Niño and La Niña? The goal of this study is to answer that 
question.

Here, we use the nonlinear local Lyapunov exponent (NLLE) 
method, which has been widely used in the study of atmospheric 
and oceanic predictability (Ding and Li, 2009; Li and Ding, 
2011, 2013), to investigate EASM predictability in a quantitative 
manner. Using this method, the EASM predictability limits as-
sociated with El Niño and La Niña forcing will be quantitatively 
determined. However, to apply the NLLE method requires long 
datasets, and there are only about 10 years of composite observa-
tional data available. To address this shortfall in data, we used the 
SNR method to analyze the observational data, and then ran model 
experiments to generate the amount of data required for the NLLE 
method. For this study, we measured the EASM using two types 
of index, and predictability was explored based on qualitative and 
quantitative methods. Our aim was to deepen our understanding of 
the effect of different ENSO events on EASM predictability.

The reminder of this article is arranged as follows. The data 
and methods used are described in Section 2. Sections 3 and 4 
consider the response of EASM predictability to El Niño and La 
Niña in the observations and models. Finally, a discussion and our 
conclusions are provided in Section 5.

2. Data and methods

2.1 Reanalysis data
The SST dataset used in this study was based primarily on the 

Extended Reconstructed SST version 3b (ERSSTv3b) obtained 
from the National Oceanic and Atmospheric Administration 
(NOAA) with a 2° × 2° horizontal grid resolution and covering 
the period 1949 to 2015 (Smith et al. 2008). The monthly SST 
data were used to examine the typical Oceanic Niño Index (ONI). 
The ONI index is a three-month running mean of SST anomalies 
in the Niño 3.4 region (5°N–5°S, 120°W–170°W). El Niño and La 
Niña periods were based on a threshold of ±1.0°C for the ONI in 
the boreal winter (December–February: DJF). 

To analyze the EASM, the daily mean atmospheric fields were 
taken from the National Centers for Environmental Prediction 
(NCEP1) reanalysis data, with a horizontal resolution of 2.5° × 
2.5°, over the period 1948–2015 (Kalnay et al. 1996; Kistler et al. 
2001). In this study, the boreal summer covers the months June–
August (JJA).

Given that the EASM has complex spatial and temporal struc-
tures (Ding 1992; Wang et al. 2008), two categories of monsoon 
index were used to verify our results. Li and Zeng (2002, 2003; 
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El Niño run, the regression of the ONI index and global SST was 
calculated and added over the observed monthly climatology of 
the SST (Fig. 1a). In the La Niña run, the forcing SST was the 
observed monthly climatology of SST minus the regression (Fig. 
1b). These two model experiments were forced by the Hadley 
Center Global Sea Surface Temperature (HadISST) dataset from 
1850 to 2012 (Rayner et al. 2006).

In both the El Niño and La Niña runs, the SST was kept 
constant in time and the model was integrated for 20 yr. Thus, the 
daily mean atmospheric field data could be used to investigate the 
response of the EASM to ENSO events.

3. Observational results

To explore the response of EASM predictability to El Niño 
and La Niña, we used the ONI index to identify the El Niño 
and La Niña events. The ONI time series was calculated from 
December to February during the mature phase of ENSO, be-
cause the main impact of ENSO on the EASM occurs during the 
boreal winter. Figure 2 shows the ONI time series for the period 
1949−2015, which is characterized by its significant interannual 
variability, with the range of the SST anomalies being about 
±2.0°C. The most extreme temperature anomalies occurred in 
1997 (+2.31°C) and 1973 (−1.85°C).

The El Niño and La Niña events selected for analysis are 
listed in Table 1, and these were identified using a threshold of 
±1.0°C. Most of the El Niño and La Niña events involved in this 
study (Table 1) are commonly recognized by the community (e.g., 
McPhaden 1999; Jin et al. 2003; Ding et al. 2016). Then, we used 
composite analysis to check the SST anomalies in DJF over the 
tropical Pacific (Fig. 3). The El Niño-related and La Niña-related 
SST patterns are shown in Figs. 3a and 3b, respectively. Figure 
3a shows that the El Niño-related positive SST anomalies are 

hereafter I-LZ) defined their EASM index using dynamic normal-
ized seasonality (DNS), which is based on a seasonal alternation 
in wind direction over the monsoon region (10°N–40°N, 110°E– 
140°E). Wang and Fan (1999; hereafter I-WF) used the area- 
averaged 850-hPa zonal wind (U850) over (5°N–15°N, 90°E– 
130°E) minus the area-averaged U850 over (22.5°N–32.5°N, 
110°E–140°E) as their index. These two indices show relatively 
high correlations with the circulation and precipitation systems of 
the EASM (Wang et al. 2008).

2.2 Methods
a. Signal-to-noise ratio (SNR) method

The SNR method has been widely used to investigate atmo-
spheric predictability (Trenberth 1984, 1985; Goswami 2004). 
The SNR estimates atmospheric predictability by quantifying the 
relative contributions of the predictable climate signal and the 
unpredictable climate noise:

SNR Var signal Var noise
Var noise

=
+( ) ( )
( )

, 	 (1)

where Var (signal ) represents the variance of interannual variabil-
ity, and Var (noise) is the variance of the intra-annual (seasonal) 
variability.

b. Nonlinear local Lyapunov exponent (NLLE) method
The NLLE measures the average growth rate of initial errors 

based on the nonlinear error growth equations (Ding and Li 2007; 
Ding et al. 2008). The atmospheric and oceanic predictability 
limit can be quantitatively determined over various timescales 
using the NLLE method (Ding et al. 2010b, 2011, 2016). EASM 
predictability can be determined using local dynamical analogs 
of the evolution based on the monsoon index time series. The ap-
proximation of the mean relative growth of the initial error (RGIE) 
can be obtained as follows:

Φ( ) exp ( ) , ( , , , , )τ ξ τ τi i i i n= [ ] =1 2 3 	 (2)

where Φ− (τ i ) indicates that the average error growth Φ−  changes 
with the average of the error growth rates ξ− (τ i ) and time τ i . By 
investigating the evolution of Φ− (ti ) with increasing τ i , we can es-
timate the mean predictability limit of the variable as a function of 
the evolution time τ i (i = 1, 2, 3, …, n), where n is the total number 
of evolutionary steps.

2.3 Model experiment
We used the National Center for Atmospheric Research 

(NCAR) Community Atmosphere Model version 5 (CAM5) 
to gain a more robust insight into the atmospheric response to 
ENSO-related SST forcing. CAM5 is the atmospheric component 
of the Community Earth System Model (CESM 1.0.4) and uses 
the finite-volume dynamical core, which has 42-wave triangular 
spectral truncation (T42) and 30 vertical levels from the surface 
up to 2.25 hPa.

We carried out two experiments: El Niño and La Niña. In the 

Fig. 1. (a) Regression of ONI index and global SST over tropical Pacific Ocean for DJF during the period 1949−2015. (b) As (a) but in reverse.

Fig. 2. Time series of ONI index for DJF over the period 1949−2014, after 
removing the annual cycle and linear trend, standardizing. The dashed 
lines indicate the thresholds for definition of warm and cold events. The 
red and blue bars indicate the positive and negative SST anomalies,  
respectively.
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concentrated mainly in the central and eastern tropical Pacific, 
whereas the El Niño-related negative SST anomalies are found 
in the western Pacific and subtropical ocean. The La Niña-related 
SST pattern is the reverse of the El Niño-related pattern (Fig. 3b).

We used the SNR method to estimate the potential EASM pre-
dictability levels associated with El Niño and La Niña events (Fig. 
4). The predictability of the EASM affected by El Niño is up to 
12.35, whereas it is 4.19 when affected by La Niña. The results in-
dicate the asymmetric response of EASM predictability to ENSO, 
suggesting that El Niño (La Niña) will lead to a stronger (weaker) 
predictable intensity for the EASM in the following year.

We also ran model experiments to examine this asymmetric 
response of EASM predictability to El Niño and La Niña. In 
addition, the NLLE method was used to determine the predict-
ability limit. Compared with the SNR method, which calculates 
only the potential predictability intensity, the NLLE method can 
estimate the exact predictability limit. However, due to the lack 
of observational data, we were unable to use the NLLE method 
with the observational results. Under our model setup, the position 
and intensity of the two sets of SST anomalies were the same in 
both runs, only the sign differed, so that the impact of SST alone 
was considered and all other factors were ignored. This approach 
highlights the impacts of El Niño and La Niña.

4. Model results

The mean errors of the EASM initially increase quickly, then 
slow down, and finally reach saturation (Fig. 5). Figure 5a and 
5b shows that the error growth behaves differently to the rate of 
growth. The error growth associated with the I-LZ index under 
El Niño forcing becomes much slower than that for the La Niña 
forcing. Therefore, the error growth of I-LZ forced by El Niño (La 
Niña) needs more (less) time to reach saturation.

Ding and Li (2007) proposed that for chaotic systems the 
error growth will eventually reach saturation. As the error growth 
approaches saturation level, almost all of the information on the 
initial states is lost and the prediction becomes meaningless. Using 
the saturation level, this predictability limit can be determined. 
To reduce the effects of sampling fluctuations, we defined the 
predictability limit as the point when the error reached 95% of its 
saturation level. As the moment to saturation, the predictability 
will be determined (shown in Fig. 6).

The predictability of I-LZ forced by El Niño is up to 32 days, 
whereas that forced by La Niña is only 22 days. This 10-day 
difference suggests that El Niño will lead to the EASM having a 
longer predictability limit than La Niña. We also investigated the 
error growth associated with the I-WF index forced by El Niño 
and La Niña (Figs. 5c and 5d, respectively). According to the cri-
terion of the 95% saturation level, the predictability limit of I-WF 
forced by El Niño (La Niña) is approximately 21 days (15 days). 
As with I-LZ, the error growth of I-WF forced by El Niño (La 
Niña) appears to be longer (shorter) than the predictability limit. 
Our analysis of the response of the two EASM indices also reveals 
that the predictability limit calculated using the NLLE method is 
based mainly on the respective initial states. Figures 5a and 5c 
shows that, under El Niño forcing, the error growth of I-LZ fol-
lows a slower deceleration process than that of I-WF. Therefore, 
I-LZ (around 32 days) tends to produce more skillful predictions 
than I-WF (around 21 days; Fig. 6). As mentioned above, it is 
evident that El Niño will lead to relatively improved predictability 
for both EASM indices.

Our simulation results are similar to the observations, which 
gives us the confidence to conclude that ENSO does influence 
EASM predictability in the following year. Note that El Niño will 
lead to relatively high predictability of the EASM. In contrast to 
previous research (e.g., Palmer et al. 1992; Shi et al. 2008), this 
work has investigated the response of EASM predictability to 
El Niño and La Niña. Moreover, our experiments eliminated the 
impact of other factors, such as the intensity and position of the 
SST anomalies.

5. Discussion and conclusions

Improving our understanding of the impact of external forcing 
on climate predictability is vital to the ongoing development of 
numerical models and improving our forecast skill with respect to 
the EASM. ENSO is well known to have a significant influence 

Fig. 4. The potential predictability of the EASM. The red and blue bars 
indicate the El Niño and La Niña effect, respectively.

Table 1. Classification of El Niño/La Niña events during the period 1949–
2015.

Event Year

El Niño

La Niña

1957, 1965, 1968, 1972, 1982, 1986, 1991, 1994, 1997, 
2002, and 2009
1949, 1955, 1970, 1973, 1975, 1988, 1998, 1999, 2007, 
and 2010

Fig. 3. Composite anomalies of SST over tropical Pacific Ocean in DJF for selected (a) El Niño and (b) La Niña events during the period 1949−2015.  
Details of the ENSO change events selected for composite analysis are given in Table 1.
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on the EASM. Thus, in this study, we investigated the effect of 
ENSO on EASM predictability, and in particular the different 
effects of El Niño and La Niña. By using reanalysis data and 
statistical methods, we found that the response of EASM pre-
dictability is asymmetrical, and that El Niño leads to stronger 
predictable intensity than La Niña. In addition, two EASM indices 
and the quantitative method (NLLE) being used to research the 
model simulation results, the asymmetric response still exists even 
though La Niña intensity has been increased.

Although we found an asymmetric response in EASM pre-
dictability, how the two different SST anomaly patterns, El Niño 
and La Niña, affect EASM predictability remains an unanswered 
question. In a previous study, Li et al. (2017) found that forcing by 
the positive anomalies leads to a higher predictability limit than 
forcing by the negative anomalies. They used a simple chaotic 
model to demonstrate how the different initial conditions drive 
the nonlinear response, which in turn leads to the different pre-
dictability limits, and this provides one possible interpretation of 
our results. Both the EASM and ENSO are complex and nonlinear 
climate systems, but in particular, ENSO as an external forcing 
factor that leads to a nonlinear response requires more research, 
and this will be the subject of a future paper.
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